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ABSTRACT 

 

An interesting calibration problem is presented in which one can calibrate an instrument to an 

uncertainty better than that offered by NIST.  This is due not to any defect on the part of NIST, 

but to a specialized method developed for a unique application. 

 

A specially-built, shielded and compensated voltage transformer with taps in multiples of 120 

volts can be calibrated ratiometrically above 120 volts using an uncalibrated DVM of sufficient 

resolution.  A NIST calibration is required for the 120 V tap.  The interesting aspect of this 

ratiometric method is that the DVM does not need to be calibrated, since it is used at the same 

point to measure the same incremental steps.  When sufficient data is accumulated, the 

uncertainty in the curve-fitted data reflects any errors due to repeatability in the uncalibrated 

DVM as well as non-linearity in the transformer.  This number is added to the uncertainty in the 

NIST calibration at 120 V. 

 

At the time of publication, this method only applies to the magnitude of the tap voltage ratios.  

Further work needs to be done to verify a null phase difference between the taps. 

 

LEARNING OBJECTIVES 

 

This method is of general interest to the metrology community in that it takes the basic linear 

curve fit used in many calibration scenarios and by applying it in a specialized application, 

produces better results than offered by NIST in its off-the-self calibration program.  The method 

is elegant in that it uses a basic mathematical method optimized for maximum benefit under 

special circumstances. 

 



Page 2 of 13 

2011 NCSL International Workshop and Symposium 

 

1 -- INTRODUCTION 

 

One of the requirements when preparing for a 17025 accreditation is to establish and document 

all your calibration uncertainties.  This paper deals with the ratiometric calibration to within a 

few tens of ppm of a high-precision, high voltage actively-compensated and guarded voltage 

autotransformer with equally spaced taps at 120, 240, 360, and 480 Vac . The purpose for which 

the transformer was built is to establish NIST traceable integral multiples of 120 Volts.  

Multiples of 120 Volts are the most common voltages used in power generation in the United 

States. 

 

There are many reasons for wanting to create such a transformer.  First, calibration costs at the 

National Institute of Standards and Technology (NIST, an agency of the U.S. Department of 

Commerce) and other National Metrology Institutes tend to have a substantial proportion of the 

cost of calibration proportional to the number of test points required and also tend to be 

expensive enough that they are usually a noticeable expense in a company’s metrology budget.  

Being able to reduce the number of calibration points required is an asset.   

 

Second, due to the prevalence of 120 Vac and its multiples, NIST takes great pains to offer a 

good AC voltage calibration uncertainty at this voltage level.  Unfortunately, uncertainties at 

voltages other than 120 Vac often decline in quality substantially.  To get low uncertainties at 

voltages that are multiples of 120 V, a good technique is to use ratiometric techniques to 

multiply the original 120 V.   

 

Finally, NIST and most other NMI’s often are not prepared to perform calibration of ratio 

transformers or Inductive Voltage Dividers (IVD) with voltages higher than 100 Vac   

 

However, if you have a stable, high resolution DVM you can perform the calibration of equally-

spaced taps of a ratio transformer yourself in your own lab.  The following calibration method 

checks the linearity of the taps.  Once the existence of the desired linearity is established all you 

need to achieve precise voltages at the other taps is a precise NIST-traceable calibration on the 

120 V tap.  

 

The next question which comes up is the uncertainty of your DVM.  A good DVM (6 ½ digits is 

probably the minimum resolution) at 120 Vac is generally accurate to ± 250 ppm  -- so what 

good is that when you are looking for uncertainties in the tens of ppm?  The answer is that as 

long as the DVM is stable, you don’t even need to have it calibrated.  You can check the linearity 

of the transformer by using the DVM to measure all the equal 120 V increments -- 0 to 120, 120 

to 240, 240 to 360, and 360 to 480 V.  When you do your linear curve fit to the data, any non-

linearity in your transformer and the repeatability of your DVM will put upper limits on the 

quality of your calibration.  If your curve fit gives you an uncertainty of ±500 ppm, that is the 

best you can do, and you cannot use this method to get an uncertainty to ±50 ppm.  But, "the 

proof of the pudding is in its eating".  If the curve fit gives you an uncertainty of 50 ppm, you 

can rely upon it. 
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The method will examine two different scenarios in calculating the final uncertainty.  There are 

cases in metrology in which one is willing to trade some uncertainty for the sake of ease in 

calculation or use. 

 

For the sake of illustration and simplicity, all 120 V  measurements are scaled to 1 and the data 

are shown with wide scatter and significant non-linearity in the body of this paper.  Then, in the 

Appendix, a new calculation is shown with real data at 120 V increments. 

 

2 -- THE METHOD 

 

Step1. Get a NIST-traceable calibration on the 0 to 120 Volt tap. The uncertainty will be labeled 

σ1, and it needs to be less than your desired final uncertainty.  This value will be used in Step 6 

below.  

 

Step 2. Take a series of measurements with the DVM from each set of transformer taps.  They 

are in increments of 120 volts each.  A set of dummy data are shown in Table 1 below.  As 

mentioned above, 120 V data is scaled to 1 for the purposes of demonstration.  The average 

measurements from the taps run from 1.41 to 0.5 (yes -- really poor data selected to display the 

effect of the method) 

 

 

Table 1 -- Data taken comparing the successive 120 Volt increments on the transformer taps.  

All data is scaled to 1 for a 120 Volt measurement.  The Max Std Dev = 0.796 Volts.  This is a 

very conservative estimate of uncertainty due to repeatability or instability of the DVM = σ2.  

(A less conservative estimate is the Ave Std Dev = 0.557 Volts) 

 

Tap # 1 2 3 4 

From tap voltage of 0 120 240 360 

To tap voltage of  120 240 360 480 

Voltage scaled to 1 1.286 0.667 1.394 1.031 

" 0.534 1.089 0.636 0.378 

" 1.892 0.435 0.432 0.339 

" 1.925 2.228 0.738 0.232 

     

Ave 1.41 1.10 0.80 0.50 

StDev 0.653 0.796 0.416 0.363 
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Step 3. Data Analysis -- Assemble the data in a table like that shown in Table 2, below, with the 

x-axis composed of the tap numbers and the y-axis composed of the successive sums of the 

individual averaged readings.  The last column shows the "Expected Values for Y". that would 

be measured if the taps were perfectly linear.  The assembled data are illustrated in Figure 1. 

 

Table 2 -- Assembled Calibration Data 

 

X Y Composition Expected Values for Y 

0 0.000  0.000 

1 1.410 Tap # 1 1.000 

2 2.514 Tap # 1 + Tap # 2 2.000 

3 3.314 Tap # 1 + Tap # 2 + Tap # 3 3.000 

4 3.810 Continued summation 4.000 
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Figure 1 -- Assembled calibration data formed by combining the incremental measurements. 



Page 5 of 13 

2011 NCSL International Workshop and Symposium 

Step 4.  Least-squares curve fit.  Do the least squares curve fit to the data as shown in Table 3 

and illustrated in Figure 2 with the residuals being shown in Figure 3. 

 

Table 3 -- Least-Squares Curve Fit Data 

 

Intercept NOT 

significant = 0.304 762   ±   0.811 468 X ave Y ave 

No. 

Obs. T  

Slope = 0.952 381   ±   0.331 28 2.00 02.21 5 3.18245  

        

Points used in analysis (plotted points may be added 

further below) 95%    

X Y Predicted Residuals Interval  LCL UCL 

0 0.000 0.304 8 -0.304 8 1.325 1  -01.02 01.63 

1 1.410 1.257 1 0.152 4 1.194 4  00.06 02.45 

2 2.514 2.209 5 0.304 8 1.147 6  01.06 03.36 

3 3.314 3.161 9 0.152 4 1.194 4  01.97 04.36 

4 3.810 4.114 3 -0.304 8 1.325 1  02.79 05.44 

Average    1.237 3    
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Figure 2 -- Least-squares curve fit demonstrating non-linearity and repeatability in the measuring 

system showing the Upper and Lower Control Limits (LCL and UCL) set at 95% confidence. 
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Figure 3 --  The residuals from the curve fit showing significant non-linearity 

 

Step 5A. Choice of Uncertainty Calculation by Method A.  A conservative estimate of the 

uncertainty due to non-linearity is the 95% confidence interval at the upper (or lower) end of the 

plot, ± 1.3251 Volts in this case.  This is shown in the Figure 4 with a bold-face arrow and also 

as a bold-faced value in Table 3. The uncertainty is not easily represented as a ppm or % value, it 

is just a value of voltage.  Since this is a 95% estimate of the uncertainty, 1/2 its value is an 

estimate for σ3 which will be used in Step 6. (a less conservative estimate would be an average 

of the confidence intervals for all the points, 1.2373, which is not very different from the above.) 
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Figure 4 -- Plot of the least-squares showing the range of the 95% confidence interval. 
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The uncertainty calculated as an RSS combination of σ1, σ2 and σ3 is the best uncertainty 

available treating the data as a block, but it only applies if you use the Predicted values for the 

ratios, which are repeated in the Table 4. 

 

Table 4 -- Comparison of the different ratio values 

 

X -- Same as Nominal Ratio Y -- Same as Measured Ratio Predicted Ratio 

0 0.000 0.304 8 

1 1.410 1.257 1 

2 2.514 2.209 5 

3 3.314 3.161 9 

4 3.810 4.114 3 

 

In other words, a technician using the transformer all day will find it much more efficient if she 

can calculate her results using the nominal values of 1,2,3,4, rather than the curve-fitted values of 

1.2571, 2.2095, 3.1619 and 4.1143.  This is only the case if the transformer has significantly 

different ratio values on the taps.  But considering the level of accuracy required, this may be an 

issue.  Method B, below, addresses a solution to the problem. 

 

Step 5B.  Choice of Uncertainty Calculation by Method B. Using the Nominal Ratios rather than 

the Predicted introduces efficiency at the risk of increased uncertainties.  That will introduce an 

offset into the ratios which can be estimated by averaging the individual offsets of the Predicted 

ratio from the Nominal ratios (dashed curve to the solid curve below), shown in bold lines in the 

Figure 5. 
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Figure 5 -- Plot of least-squares fit showing the errors between the Predicted Ratios and the 

Nominal Ratios (slope=1) 
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Table 5 -- The difference between the Nominal Ratios and the Predicted Ratios. 

 

X Y Predicted Nominal Ratio Predicted - Nominal 

1 1.41 1.2571 1 0.2571 

2 2.514 2.2095 2 0.2095 

3 3.314 3.1619 3 0.1619 

4 3.81 4.1143 4 0.1143 

   Average 0.1857 

   Max 0.2095 

 

This is a new uncertainty to add into the calculation, σ4.  It is the metrologist's choice whether 

he/she selects the maximum value (more conservative) or the average value.  Since this is 

considered a rectangular distribution, one should divide it by the square root of 3 to obtain σ4.  
The inclusion of an offset like this, for the sake of ease in calculation deviates from the strict  

G.U.M. method but it is sacrificing some uncertainty to facilitate ease of use.  

 

Step 6. Final Uncertainty Calculation.  

 

The combined standard uncertainty estimate consists of the RSS combination of all the 

components of uncertainty. 

 

σ1 -- uncertainty (From NIST or some other source) for the 0 to 120 V tap.  As a first 

estimate, this would be the final standard uncertainty just for Tap #1.  However, 

depending upon how the transformer is used and the stability of its primary 

power supply, it may need to be combined with σ2. 

σ2 -- uncertainty due to instability of 6 1/2 DVM or some other source. 

σ3 -- uncertainty due to non-linearity and any additional Type A uncertainty. 

σ4 -- extra uncertainty due to offset by using nominal tap values in Method B. 

 

σ2 and (σ3 and σ4 as applicable) need to be combined with σ1 for Tap #'s 2,3 and 4. 

 
A general combined standard uncertainty for all taps is given below. 
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The appropriate Expanded Combined Uncertainty is given by 2 * σC.   

 

On the other hand, in opposition to Method A or Method B, one may, on a case by case basis, by 

sharpening one's pencil and doing significantly more mathematical work, compute more accurate 

uncertainties for some of the individual taps.  Many times that would be excessive work for the 

application.  

 

 

3 -- CONCLUSION 

 

Using an uncalibrated DVM, we have presented a method to verify the linearity of equally 

spaced taps on a voltage transformer, which given a traceable calibration on one tap, extends the 

calibration to the other taps.  This method only applies to the magnitude of the tap ratios.  It does 

not extend to the phase.  If the transformer presents a phase difference between the taps, the 

method fails to provide a traceable calibration.  In order to complete the calibration, a number of 

experimental methods are being examined to demonstrate a null difference in phase, but the 

authors have not found one which meets the criterion.  This will be the result of a future 

presentation. 

 

 

APPENDIX 

 

In the body of this paper, the calibration method was illustrated with "dummy" data that 

displayed significant errors that could be easily seen.  In this Appendix, the calculation is 

presented with real data in a semi-tabulated format, below.  The real transformer has an 

additional tap at 600 Vac. 

 

Notes for the calculations below: 

1 In the illustrated calculation in the body of this paper, all the data were scaled to 1 for 

convenience.  In using real data, the incremental voltages were not centered around 120 volts 

but a slightly lower value.  This could be for a variety of reasons, but since we are proposing 

using an uncalibrated DVM, the actual reason is not important. 

 

In order to establish whether the slope of the curve fit is equivalent to 1, we needed to use the 

average value of all the incremental measurements, 119.999 ,797 and plot the data 

accordingly.  After the fit was performed, the slope of 119.999 857 ± 0.000 114 was not 

found to be significantly different from the average "Slope = 1" value of 119.999 ,797.  It 

could be argued that use of the nominal tap voltages can be used without additional 

correction. However, this lack of significance could be due to a lack of sufficient degrees of 

freedom.  For the sake of illustration and exactness, an additional uncertainty, σ4 , will still be 

calculated, below, if the nominal values of the current taps are to be used, rather than the 

predicted values. 

 

To reaffirm and clarify the terminology, there are two types of linearity involved in this 

discussion.  The first type refers to whether the data fit a straight line.  In fact, there is at least 
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some 2nd order curvature to the data.  The second type refers to whether the 1st order curve 

fit goes through zero, i.e. if the Intercept is zero.  In fact, the Intercept is significantly 

different from zero. 

 

2 For the real calculation, we need a value for the repeatability.  The repeatability for each 

level of incremental voltage is measured experimentally.  However, the incremental 

measurements are used to verify the linearity of the transformer, but we will be using the 

transformer at its tap values.  The repeatability from 0 to 480 V is not necessarily the 

repeatability of the incremental 120 V values. We could measure the repeatability at each tap, 

but we are not using a calibrated DVM, so the values measured would be questionable.  We 

examined two methods of determining the repeatability for each tap in order to increase our 

confidence in our results.  There were 11 test points at each incremental value.  For the first 

method, we obtained 11 summed increments of the taps and calculated the standard deviation 

of the 11 values.  In the second method, we took an RSS combination of the successive 

standard deviations.  So, for example, the repeatability (rep) for the 360 V tap is the RSS 

combination of rep(0-120), rep(120-240), and rep(240-360).  Both methods gave roughly equivalent 

values.  We used the second method for these calculations. 

 

Experimental Data (incremental measurements between taps) 

# 0 to 120V  120 to 240V  240 to 360V  360 to 480V  480 to 600V  

 (Volts) (Volts) (Volts) (Volts) (Volts) 

1 119.999 ,552 119.999 ,683 119.999 ,829 119.999 ,881 120.000 ,023 

2 119.999 ,552 119.999 ,690 119.999 ,829 119.999 ,866 120.000 ,031 

3 119.999 ,566 119.999 ,683 119.999 ,829 119.999 ,878 120.000 ,028 

4 119.999 ,570 119.999 ,697 119.999 ,836 119.999 ,885 120.000 ,016 

5 119.999 ,557 119.999 ,690 119.999 ,829 119.999 ,878 120.000 ,043 

6 119.999 ,549 119.999 ,697 119.999 ,829 119.999 ,866 120.000 ,038 

7 119.999 ,549 119.999 ,683 119.999 ,829 119.999 ,873 120.000 ,038 

8 119.999 ,557 119.999 ,690 119.999 ,841 119.999 ,863 120.000 ,045 

9 119.999 ,563 119.999 ,697 119.999 ,841 119.999 ,863 120.000 ,031 

10 119.999 ,542 119.999 ,690 119.999 ,841 119.999 ,873 120.000 ,031 

11 119.999 ,557 119.999 ,690 119.999 ,841 119.999 ,873 120.000 ,043 

      

Average Values    

 119.999 ,556 119.999 ,690 119.999 ,834 119.999 ,873 120.000 ,033 

Std Deviations    

 0.000 ,008 0.000 ,006 0.000 ,006 0.000 ,008 0.000 ,009 

      

Overall average to establish ideal slope (see Note 1 in the text, above, for an 

explanation of this number) 

 119.999 ,797     

Successive RSS of the Std Dev's (see Note 2 in the text, above, for an 

explanation of these numbers) 

 0.000 ,008 0.000 ,010 0.000 ,011 0.000 ,014 0.000 ,016 
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Assembled data for the curve fit    

 0 to 120V  120 to 240V  240 to 360V  360 to 480V  480 to 600V  

 119.999 ,556 239.999 ,245 359.999 ,079 479.998 ,952 599.998 ,985 

      

Data Analysis 

X Y Predicted Residuals 

95% Conf. 

Interval LCL UCL 

1 119.999 ,556 119.999 ,450 0.000 ,105 0.000 ,455 119.9990 119.9999 

2 239.999 ,245 239.999 ,307 -0.000 ,062 0.000 ,410 239.9989 239.9997 

3 359.999 ,079 359.999 ,164 -0.000 ,084 0.000 ,394 359.9988 359.9996 

4 479.998 ,952 479.999 ,020 -0.000 ,068 0.000 ,410 479.9986 479.9994 

5 599.998 ,985 599.998 ,877 0.000 ,109 0.000 ,455 599.9984 599.9993 

 

Intercept  = -0.000 406   ±   0.000 377.  This intercept is significantly different 

from 0. 

Slope  =     119.999 857  ±   0.000 114.  This slope is not significantly 

different from the "Slope =1 " average value found.  See Note 1, above. 

 

The results of the fit are shown below in Figure A1.  As is easily seen, the transformer is so 

linear that the spread of points, residuals and the 95% confidence limits all merge into a single 

line.  One needs to go to the residuals in Figure A2 to get visual resolution.  The residuals show a 

slight curvature, which indicates a slight deviation from true linearity.  This could be a true non-

linearity in the transformer or a measurement artifact introduced by the high voltages in the 

DVM.  The figure also shows that the predicted values different from the nominal tap voltages 

by a small amount, similar in magnitude to the residuals. 
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Figure A1 -- Linearity 
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Fit results
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Figure A2 

The "Dev from linear" curve shows the deviation from 

a linear average "slope = 1" of 119.999 ,797 

 

Components of uncertainty from the various sources 

 120V  240V  360V  480V  600V  

σ1 -- Calibration from NIST @ 120 V -- Standard uncertainty = 2.5 ppm 

 0.000 ,300 0.000 ,600 0.000 ,900 0.001 ,200 0.001 ,500 

σ2 -- Repeatability (standard deviations) 

 0.000 ,008 0.000 ,010 0.000 ,011 0.000 ,014 0.000 ,016 

σ3 --Uncertainty due to curve fit (including non-linearity).  This value was 

taken from the magnitude of the 95% confidence limits from the curve fit 

(0.000 ,455), which was then divided by 2 to obtain a 1 sigma value. 

 --- * 0.000 ,228 0.000 ,228 0.000 ,228 0.000 ,228 

σ4 -- Additional uncertainty when using the nominal value of the voltage tap.  

The largest deviation from the nominal (straight-line) shown in Figure A1 is 

0.000 ,370.  This is taken to follow a uniform distribution, so it was divided by 

the square root of 3 to obtain a 1 sigma value. 

 --- * 0.000 ,234 0.000 ,234 0.000 ,234 0.000 ,234 

      

Expanded Uncertainty by Method A in volts 

2

3

2

2

2

1(*2    

 0.000 ,600* 0.001 ,284 0.001 ,857 0.002 ,443 0.003 ,035 

      Expanded Uncertainty by Method A in ppm of tap value 

 5.0* 5.3 5.2 5.1 5.1 

 * See asterisk comment on next page. 
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 *  The uncertainty for the 120 V tap does not involve the curve fit, since it 

received the NIST calibration. Depending upon use, the NIST uncertainty 

may combined with the measured repeatability, σ2.  
 

Expanded Uncertainty by Method B in volts 

 4

2

3

2

2

2

1(*2    

 0.000 ,600* 0.001 ,753 0.002 ,326 0.002 ,912 0.003 ,503 

      Expanded Uncertainty by Method B in ppm of tap value 

 5.0* 7.3 6.5 6.1 5.8 

      *  The uncertainty for the 120 V tap does not involve the curve fit, since it 

received the NIST calibration. Depending upon use, the NIST uncertainty 

may combined with the measured repeatability, σ2.  
 

 

 

 

Concluding technical comment for those familiar with the design of amplifiers. 

DVM amplifier designers will note that there are experimental questions 

which we have left unaddressed in this paper since the purpose is to discuss 

a mathematical technique rather than explain a lot of engineering details.  

These details concern the different high voltage fields at each tap level, 

grounding and CMRR's.  We used a separately driven Faraday cage whose 

power transformer secondary was grounded to the cage.  The capacitive 

current between the power transformer’s secondary and primary was thus 

supplied by the separate drive and not the ratio transformer’s tap.  The 

Faraday cage was driven to keep it within 100mV of the lower voltage tap’s 

voltage.  From the DVM’s point of view, its universe was constant 

regardless of the taps being measured.    

 


